トランジスタを用いた CR 移相型発振回路の
動作原理

大豆生田利章

original: 2006/2/21, revised: 2012/7/18

トランジスタを用いた CR 移相型発振回路の回路図を図 1 に示す。

図 1: CR 移相型発振回路

この回路の h パラメータを用いた小信号等価回路が図 2 の回路である。ただし，R' は R_1 と R_2 の並列合成抵抗

$$ \frac{1}{R'} = \frac{1}{R_1} + \frac{1}{R_2} \tag{1} $$

である。

ここで，トランジスタの電圧増幅率 A_v を求めるとき

$$ A_v = \frac{v_o}{v_i} = \frac{-R_0 h_{fe} i_b}{h_{ie} i_b} = -\frac{R_0 h_{fe}}{h_{ie}} \tag{2} $$

となる。ただし，R_0 は h_{oc} と R_L の並列合成抵抗

$$ \frac{1}{R_0} = h_{oc} + \frac{1}{R_L} \tag{3} $$
図 2: CR 移相型発振回路の小信号等価回路

である。
次に、帰還率 \(\beta = \frac{v_i}{v_o} \) を求めてみる。計算を簡単にするために

\[
\frac{1}{R'} + \frac{1}{h_{ie}} = \frac{1}{R}
\]

(4)

となるように \(R' \) を決めるものとする。従・テブナンの定理を用いて電流源を電圧源に変換すると、図 3 の等価回路が得られる。

図 3: CR 移相型発振回路の帰還率

図 3 の回路の閉路方程式

\[
v_o = \left(R_0 + R + \frac{1}{j\omega C} \right) I_1 - RI_2
\]

(5)

\[
0 = -RI_1 + \left(2R + \frac{1}{j\omega C} \right) I_2 - RI_3
\]

(6)

\[
0 = -RI_2 + \left(2R + \frac{1}{j\omega C} \right) I_3
\]

(7)

を解いて \(I_3 \) を求めると、

\[
I_3 = \frac{j\omega Cp^2v_o}{p^3 + 6p^2 + 5p + 1 + q(3p^2 + 4p + 1)}
\]

(8)

となる。ただし、\(p = j\omega CR \), \(q = j\omega CR_0 \) である。これより帰還率 \(\beta \) および
ループ利得 \(\beta A_v \) は

\[
\beta = \frac{v_i}{v_o} = \frac{RI_3}{v_o} = \frac{p_i}{p^3 + 6p^2 + 5p + 1 + q(3p^2 + 4p + 1)}
\] (9)

\[
\beta A_v = \frac{p^3 A_v}{p^3 + 6p^2 + 5p + 1 + q(3p^2 + 4p + 1)}
\] (10)

となる。ループ利得の虚部が 0 になる条件（周波数条件）

\[
6p^2 + 1 + 4pq = 0
\] (11)

に \(p = j\omega CR \), \(q = j\omega CR_0 \) を代入することにより，発振角周波数 \(\omega_0 \) が

\[
\omega_0 = \frac{1}{CR} \cdot \frac{1}{\sqrt{6 + 4k}}
\] (12)

と求まる。ただし，\(k = \frac{R_0}{R} \) とした。また，\(\omega_0 \) におけるループ利得が 1 以上という条件（電力条件），

\[
\beta A_v = \frac{p^3 A_v}{p^3 + 6p^2 + 5p + 1 + q(3p^2 + 4p + 1)}
\]

\[
= \frac{p^3 + 5p + q(3p^2 + 1)}{29 + 23k + 4k^2} \geq 1
\]

より，発振のために必要なトランジスタの電圧増幅率 \(A_v \) に対する条件

\[
A_v \leq -(29 + 23k + 4k^2)
\] (13)

が求まる 1. 特に，\(R_0 \ll R \) のときは，\(k \approx 0 \) となるので，式 (12) と式 (14) の条件は

\[
\omega_0 = \frac{1}{\sqrt{6CR}}
\]

\[
A_v \leq -29
\] (15) (16)

となる。

1. エミッタ接地増幅回路は反転増幅をするので負号が付く。